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Main goal of this chapter
Theorem (Obvious)

An integer n=∏
j p

vj
j ∈N is a square iff. vj is even for all j .

Example

2020= 22511011 is not a square.

Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Theorem (Legendre)

An integer n ∈N is a sum of 3 squares iff. it is not of the form
4a(8b+7), a,b ∈ZÊ0.

Theorem (Lagrange)

Every n ∈N is a sum of 4 squares.
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Main goal of this chapter
Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Example

2019= 316731 is not a sum of 2 squares.
3×2019= 326731 = 362+692.
2020= 22511011 = 242+382.
32 = 32+02.

Theorem (Legendre)

An integer n ∈N is a sum of 3 squares iff. it is not of the form
4a(8b+7), a,b ∈ZÊ0.

Theorem (Lagrange)

Every n ∈N is a sum of 4 squares.
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Main goal of this chapter
Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Theorem (Legendre)

An integer n ∈N is a sum of 3 squares iff. it is not of the form
4a(8b+7), a,b ∈ZÊ0.

So n is not a sum of 3 squares iff. v2(n) is even and
n

2v2(n)
≡−1 mod 8.

Example

60= 22×15 is not a sum of 3 squares.
30= 21×15= 52+22+12. 44= 22×11= 62+22+22.

Theorem (Lagrange)

Every n ∈N is a sum of 4 squares.
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Main goal of this chapter

Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Theorem (Legendre)

An integer n ∈N is a sum of 3 squares iff. it is not of the form
4a(8b+7), a,b ∈ZÊ0.

Theorem (Lagrange)

Every n ∈N is a sum of 4 squares.

Example

60= 62+42+22+22.
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Waring’s problem (not examinable)

Theorem (Hilbert, 1909)

For each k ∈N, there exists m ∈N such that every n ∈N is the
sum of m kth powers.

For each k , the smallest possible m is denoted by g(k).

Theorem
g(2)= 4 (Lagrange, 1770)
g(3)= 9 (Wieferich - Kempner, ∼1910)
g(4)= 19 (Balasubramanian - Dress - Deshouillers, 1986)
g(5)= 37 (Chen, 1964)
· · ·
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Gaussian integers
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Gaussian integers

Definition
The set of Gaussian integers is

Z[i ]= {a+bi | a,b ∈Z} ⊂C,

where i ∈C is such that i2 =−1.

Proposition
Z[i ] is a ring: whenever α,β ∈Z[i ], we also have

α+β, α−β, αβ ∈Z[i ].

Proof.

(a+bi)(c +di)= (ac −bd)+ (ad +bc)i .
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Gaussian integers

Definition
The set of Gaussian integers is

Z[i ]= {a+bi | a,b ∈Z} ⊂C,

where i ∈C is such that i2 =−1.

Proposition
Z[i ] is a ring: whenever α,β ∈Z[i ], we also have

α+β, α−β, αβ ∈Z[i ].

Remark
Z[i ]= {P(i) | P(x) ∈Z[x ]}, whence the notation Z[i ].
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The norm
Definition
The norm of α= a+bi ∈Z[i ] is

N(α)=αα= a2+b2.

Remark
N(α)Ê 0, with equality only if α= 0.
If n ∈Z⊂Z[i ], then N(n)= n2.

Proposition
For all α,β ∈Z[i ], N(αβ)=N(α)N(β).

Lemma
An integer n ∈N is a sum of 2 squares iff. it is the norm of a
Gaussian integer.
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Units

Definition
A Gaussian integer α ∈Z[i ] is a unit if it is invertible in Z[i ],
meaning there exists β ∈Z[i ] such that αβ= 1. The set of
units of Z[i ] is denoted by Z[i ]×.

Proposition
Let α ∈Z[i ]. Then α is a unit iff. N(α)= 1.

Proof.
If αβ= 1, then 1=N(1)=N(αβ)=N(α)N(β).
Conversely, if N(α)= 1, then αβ= 1 for β=α ∈Z[i ].
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Units

Definition
A Gaussian integer α ∈Z[i ] is a unit if it is invertible in Z[i ],
meaning there exists β ∈Z[i ] such that αβ= 1. The set of
units of Z[i ] is denoted by Z[i ]×.

Proposition
Let α ∈Z[i ]. Then α is a unit iff. N(α)= 1.

Corollary

Z[i ]× = {1,−1, i ,−i }.

Remark
We could say that in Z, the units are 1 and −1; hence the
term “unit”.
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Arithmetic with
the Gaussian integers
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Euclidean division

Theorem
Let α,β ∈Z[i ] with β 6= 0. There exists γ,ρ ∈Z[i ] such that

α=βγ+ρ and N(ρ)<N(β).
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Euclidean division

Proof.
Compute α/β= x +yi ∈C. Let m,n ∈Z such that

|x −m| É 1
2

and |y −n| É 1
2

,

and set γ=m+ni , ρ =α−βγ. Then γ,ρ ∈Z[i ], and
α=βγ+ρ.
Extend the norm to all of C by N(α)=αα. Then

N(ρ)

N(β)
= N(α−βγ)

N(β)
=N

(
α

β
−γ

)
=N((x +yi)− (m+ni))

= (x −m)2+ (y −n)2 É
(
1
2

)2
+

(
1
2

)2
= 1
2

,

so N(ρ)É 1
2N(β)<N(β).
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Euclidean division

Theorem
Let α,β ∈Z[i ] with β 6= 0. There exists γ,ρ ∈Z[i ] such that

α=βγ+ρ and N(ρ)<N(β).

Example
Let α= 8+ i , β= 2+3i . Then

α

β
= 8+ i

2+3i
= (8+ i)(2−3i)
(2+3i)(2−3i)

= 19
13

− 22
13

i ≈ 1−2i ,

so we set γ= 1−2i and ρ =α−βγ= 2i .
We can check that N(ρ)= 4<N(β)= 13.

Remark
In general, the pair (γ,ρ) is not unique. But it will not matter
for what we have in mind!
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Consequences of Euclidean division: gcd

Definition
Let α,β ∈Z[i ]. We say that α |β if there exists γ ∈Z[i ] such
that β=αγ.

Lemma (Important)

For all α ∈Z[i ], we have α |N(α).
If α |β in Z[i ] , then N(α) |N(β) in Z.
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Consequences of Euclidean division: gcd

Definition
We say that α,β ∈Z[i ] are associate if α |β and β |α.

Lemma
α,β are associate ⇐⇒β= υα for some υ ∈Z[i ]×.

Proof.
⇐: If β= υα, then α |β, and also α= υ−1β so β |α.
⇒: β= ξα and α= ηβ for some ξ,η ∈Z[i ], so α= ξηα.

If α 6= 0 then ξη= 1 so ξ,η ∈Z[i ]×.
If α= 0 then β= ξα= 0 so also OK.
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Consequences of Euclidean division: gcd

Definition
Let α,β,γ ∈Z[i ]. We say that γ is a gcd of α, β if
for all δ ∈Z[i ], δ | γ⇐⇒ δ |α and δ |β.

Alternatively, a gcd is a common divisor whose norm is as
large as possible.

Theorem
Gcd’s exist, can be found by the Euclidean algorithm, and are
unique up to multiplication by units.
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Consequences of Euclidean division: gcd

Theorem
Gcd’s exist, can be found by the Euclidean algorithm, and are
unique up to multiplication by units.

Proof.
If α=βγ+ρ, then Div(α,β)=Div(β,ρ)  Gcd’s exist and
can be found by Euclidean algorithm.
Uniqueness: suppose α,β are not both 0, and let γ,γ′ be two
gcd’s. Then γ | γ′ and γ′ | γ.

Corollary
Given α,β, the elements of Z[i ] of the form αξ+βη

(ξ,η ∈Z[i ]) are exactly the multiples of gcd(α,β).

Gauss’s lemma: if α |βγ and gcd(α,β)= 1, then α | γ.
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Consequences of Euclidean division: factorisation

Definition (Gaussian primes)

An element π ∈Z[i ] is irreducible if π 6∈Z[i ]× and whenever
π=αβ, then one of α,β is a unit.

Example
If N(α) is a prime number, then α is irreducible.
Indeed, if α=βγ, then N(α)=N(β)N(γ).

"The converse is not true!
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Consequences of Euclidean division: factorisation

Theorem
Every nonzero α ∈Z[i ] may be factored as

α= υπ1 · · ·πr
with υ ∈Z[i ]× and the πj irreducible.

If α= υ′π′
1 · · ·π′

s , then r = s and each π′
j is associate to a πk .

Proof.
Euclid’s lemma holds in Z[i ].

Example

2= (−i)(1+ i)2 = i(1− i)2.
1± i is irreducible since it has norm 2 which is prime. These
are the same factorisations since 1+ i = i(1− i).
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Classification of
the Gaussian primes
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Decomposition of prime numbers in Z[i ]

Theorem
Let p ∈N be prime.

(Split case) If p ≡+1 mod 4, then p =ππ for some
irreducible π ∈Z[i ] of norm p, and π,π are not associate.
(Inert case) If p ≡−1 mod 4, then p remains irreducible in
Z[i ].
(Special case) 2= (1+ i)(1− i)= (−i)(1+ i)2.

Example

3 ∈Z[i ] is an irreducible whose norm N(3)= 32 is composite.

5= (2+ i)(2− i).
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Decomposition of prime numbers in Z[i ]

Lemma
Let p ∈N be prime, and suppose p becomes reducible in Z[i ].
Then p factors as p =ππ, where π ∈Z[i ] is irreducible of norm
p; besides π= a+bi is such that a,b are coprime in Z.

Lemma
If p ≡−1 mod 4, then p is irreducible in Z[i ].

Lemma
If p ≡+1 mod 4, then p splits in Z[i ].

Lemma
Suppose p =ππ. If π and π are associate, then p = 2.
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Decomposition of prime numbers in Z[i ]

Lemma
Let p ∈N be prime, and suppose p becomes reducible in Z[i ].
Then p factors as p =ππ, where π ∈Z[i ] is irreducible of norm
p; besides π= a+bi is such that a,b are coprime in Z.

Proof.
We have p = υπ1 · · ·πr where r Ê 2. Then

p2 =N(p)=N(υ)N(π1) · · ·N(πr ),

so r = 2 and N(π1)=N(π2)= p. Thus π1π1 = p.

Write π1 = a+bi , a,b ∈Z. If d | a,b, then d |π1,
so d2 =N(d) |N(π1)= p, so d =±1.
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Decomposition of prime numbers in Z[i ]

Lemma
If p ≡−1 mod 4, then p is irreducible in Z[i ].

Proof.
Suppose p becomes reducible in Z[i ]. Then p =ππ, where
π= a+bi is such that a2+b2 = p and gcd(a,b)= 1.

We cannot have both p | a and p | b; WLOG p - a.
Then a ∈ (Z/pZ)×, so c = b/a ∈Z/pZ satisfies c2+1= 0,
whence

(
−1
p

)
=+1; contradiction since p ≡−1 mod 4.
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Decomposition of prime numbers in Z[i ]

Lemma
If p ≡+1 mod 4, then p splits in Z[i ].

Proof.

Since p ≡ 1 mod 4, we have
(
−1
p

)
=+1, so there exists c ∈Z

such that c2+1= kp for some k ∈Z.
Then kp = (c + i)(c − i), so p | (c + i)(c − i) in Z[i ].
If p were irreducible, then Euclid’s lemma would
force p | (c ± i); then c

p ± 1
p i ∈Z[i ], absurd.
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Decomposition of prime numbers in Z[i ]

Lemma
Suppose p =ππ. If π and π are associate, then p = 2.

Proof.
Write π= a+bi ; then gcd(a,b)= 1 so au+bv = 1 for some
u,v ∈Z.
As π | (π+π)= 2a and π | −i(π−π)= 2b, we have

π | (2au+2bv)= 2.

Therefore p =N(π) |N(2)= 4.
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Classification of Gaussian primes

Proposition
Up to associates, we have seen all the irreducibles of Z[i ] in
the previous theorem.

Proof.
Let π ∈Z[i ] be irreducible. Then π |N(π) ∈N which is a
product of prime numbers. By Euclid’s lemma, π divides one
of these prime numbers.
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Classification of Gaussian primes

Proposition
Up to associates, we have seen all the irreducibles of Z[i ] in
the previous theorem.

Corollary
Let π ∈Z[i ] be irreducible. Then either

N(π)= 2, and then π is associate to 1+ i , or
N(π) is a prime p ≡+1 mod 4, and π is associate to
exactly one of π′ and π′, where p =π′π′, or
N(π)= q2 where q ≡−1 mod 4 is prime, and π is
associate to q.
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Practical factoring in Z[i ]

Example (Factor α= 27+39i)

We know that α= υπ1 · · ·πr with υ ∈Z[i ]× and the πj
irreducible. Besides, α |N(α)= 272+392 = 2250= 2×32×53.
So α= υπ2π32π5π

′
5π

′′
5 where N(πn)= n.

We already know that we can take π2 = 1+ i and π32 = 3.

We have 5=ππ, π= 2+ i ; so each of π5,π′
5,π′′

5 may be taken
to be exactly one of 2+ i ,2− i .
If some were 2+ i and some were 2− i , then we would have
5= (2+ i)(2− i) |α, absurd. So it’s either all 2+ i or all 2− i .
We compute α/(2+ i)= 93

5 + 51
5 6∈Z[i ]

(or α/(2− i)= 3+21i ∈Z[i ]), so it’s 2− i .

Finally υ= α
(1+i)3(2−i)3 = i , whence the complete factorisation

α= i(1+ i)3(2− i)3.
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Conclusion and complements
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Sums of 2 squares
Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Proof.
⇒: If n is a sum of 2 squares, then n=N(α) for some

α ∈Z[i ]. Factor α= υπ1 · · ·πr . Then we have
n=N(α)=N(π1) · · ·N(πr ), and for each j , N(πj) is
either 2, or p ≡+1 mod 4, or q2 where q ≡−1 mod 4.
So vq(n) must be even for each q ≡−1 mod 4.

⇐: Suppose n= 2a
∏

pj≡+1 mod 4
p
bj
j

∏
qj≡−1 mod 4

q
2cj
j . Then letting

α= (1+ i)a
∏

pj≡+1 mod 4
π
bj
j

∏
qj≡−1 mod 4

q
cj
j where pj =πjπj ,

we have N(α)= n.
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Sums of 2 squares
Theorem

An integer n=∏
j p

vj
j ∈N is a sum of 2 squares iff. vj is even

whenever pj ≡−1 mod 4.

Remark
Let m,n ∈N. If both m and n are sums of 2 squares, then so is
mn.

Proof 1.

(a2+b2)(A2+B2)= (aA−bB)2+ (aB +bA)2.

Proof 2.

N(α)N(β)=N(αβ).
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Algebraic number theory (not examinable)
Instead of Z[i ], we could have introduced

Z[
p
2]= {a+b

p
2 | a,b ∈Z}.

Then, letting N(a+b
p
2)= (a+b

p
2)(a−b

p
2)= a2−2b2,

studying the decomposition of prime numbers in Z[
p
2] would

give information on which integers are of the form a2−2b2.
However, beware that there is not always a Euclidean division,
and thus not always unique factorisation!

Counter-example

In Z[i
p
5]= {a+bi

p
5 | a,b ∈Z}, we have

6= 2×3= (1+ i
p
5)(1− i

p
5)

and all 4 factors are irreducible, yet non-associate.
 Integers of the form a2+5b2 are more difficult to
characterise!
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Sums of 4 squares (not examinable)

Introduce the quaternionic order
O = {a+bI +cJ +dK | a,b,c ,d ∈Z}

IJ =−JI =K , JK =−KJ = I , KI =−IK = J , I 2 = J2 =K 2 =−1.
Given α= a+bI +cJ +dK ∈O , define α= a−bI −cJ −dK and

N(α)=αα= a2+b2+c2+d2.
Then we have N(αβ)=N(α)N(β).

Possible interpretation:

I =
(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
, N(α)= detα.

We find that every prime p ∈N splits in O .
 Every integer is a sum of 4 squares.
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Sums of 4 squares (not examinable)

Remark
Let m,n ∈N. If both m and n are sums of 4 squares, then so is
mn.

Proof 1.

(a2+b2+c2+d2)(A2+B2+C 2+D2)=
(aA−bB −cC −dD)2+ (aB +bA+cD−dC )2

+(aC −bD+cA+dB)2+ (aD+bC −cD+dA)2.

Proof 2.

N(α)N(β)=N(αβ).
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Sums of 3 squares

The set of sums of 3 squares is not closed under multiplication!

Counter-example

2= 12+12+02, and 14= 32+22+12; and yet

2×14= 28= 4×7 6= x2+y2+z2.

This explains why proofs of the theorem for 3 squares are less
nice.
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